
EPICS Programming

Andrew Johnson, AES-SSG

APS EPICS Training — 2015-03-31 — EPICS Programming

2

Outline

■ Why program on top of EPICS
■ Build system features
● Assume a basic understanding of Unix make

■ Facilities available in libCom

APS EPICS Training — 2015-03-31 — EPICS Programming

3

Why program on top of EPICS?

■ Community standard
● EPICS collaborators know and understand the EPICS layout

■ Code portability across many Operating Systems
● Making C & C++ code portable is not always easy
● EPICS APIs work the same on all targets
● Support for Linux, Mac, Windows (MS, Cygwin, MinGW), Solaris, VxWorks, RTEMS etc.

■ Build portability across Operating Systems
● Compiling code portably is not trivial
● EPICS Makefiles work the same on all hosts
● Support for Linux, Mac, Windows (MS, Cygwin, MinGW), Solaris

APS EPICS Training — 2015-03-31 — EPICS Programming

4

EPICS Build System

■ Advanced set of build rules for Makefiles in source tree
● Requires GNU Make version 3.81 or later
● Never seen a similar set of build rules

□ Autotools, imake, Premake and Qmake all generate Makefiles
□ Cmake generates Makefiles or Visual Studio project files

■ Designed for multiple target architecture builds
● Other build systems don’t integrate that functionality

■ Build rules expect a specific application layout
● <top>/configure directory

□ RELEASE file(s)
□ Several CONFIG* and RULES* files

● Makefiles must have specific content
□ Set TOP variable
□ Include specific CONFIG and RULES files

APS EPICS Training — 2015-03-31 — EPICS Programming

5

Makefiles

■ Four different kinds, related to the role
● Top-level

□ For descending into subdirectories (supports extra build targets)

● Structural
□ For descending into subdirectories

● Constructional
□ For building software

● Startup
□ For iocBoot/ioc directories

■ Differences
● Which configure/RULES* file they include
● Which variables those rules examine to control what they do

APS EPICS Training — 2015-03-31 — EPICS Programming

6

Top-level Makefile

■ <top>/Makefile
TOP = .
include $(TOP)/configure/CONFIG
DIRS = list of subdirectories

Also set *_DEPEND_DIRS here

include $(TOP)/configure/RULES_TOP

■ Add any extra target rules after the 2nd include line
■ DIRS variable lists all subdirectories to recursively build in
■ *_DEPEND_DIRS variables control the build order of subdirectories
● Example:

test_DEPEND_DIRS = configure src

● The test subdirectory will be built after the configure and src directories
● Setting *_DEPEND_DIRS variables is important for parallel builds

□ Running ‘make -j’ will build in all subdirectories simultaneously otherwise

APS EPICS Training — 2015-03-31 — EPICS Programming

7

Structural Makefiles

■ Makefiles for descending into subdirectories only
TOP = .. Adjust path as appropriate
include $(TOP)/configure/CONFIG
DIRS = list of subdirectories

Also set *_DEPEND_DIRS here

include $(TOP)/configure/RULES_DIRS

■ Very similar to top-level Makefile
● Set DIRS and *_DEPEND_DIRS variables as before
● Includes RULES_DIRS instead of RULES_TOP

■ Examples:
● <top>/exampleApp
● <top>/iocBoot

APS EPICS Training — 2015-03-31 — EPICS Programming

8

Startup Makefiles

■ Makefiles for iocBoot/ioc directories
TOP = ../..
include $(TOP)/configure/CONFIG
ARCH = ioc target architecture

TARGETS = additional files to build
include $(TOP)/configure/RULES.ioc

■ The ARCH setting controls the content of the generated TARGETS
■ Known TARGETS are
● cdCommands Intended for VxWorks only
● envPaths For other Operating Systems
● dllPath.bat For Windows architectures
● relPaths.sh For Cygwin

■ Rules for extra targets can be added after the 2nd include line

APS EPICS Training — 2015-03-31 — EPICS Programming

9

Constructional Makefiles

■ Makefiles for compiling software
TOP = ../.. Adjust path as appropriate
include $(TOP)/configure/CONFIG

Set variables here

include $(TOP)/configure/RULES
Add extra rules and dependencies here

■ Constructional Makefiles must be named ‘Makefile’, never ‘GNUmakefile’ or
‘makefile’

■ Many variables are available to control what gets built
● See Chapter 4 of the Application Developers’ Guide for a full list

APS EPICS Training — 2015-03-31 — EPICS Programming

10

What gets built and/or installed

■ Controlled by a set of variables naming the final products
● INC C/C++ Header files (.h)
● LIBRARY Static or shared object libraries (lib.a lib.so .dll)
● LOADABLE_LIBRARY Shared object libraries (lib.so .dll lib.dylib)
● PROD Executable programs (.exe)
● TESTPROD Executable programs, not installed
● OBJS Object files (.o)
● SCRIPTS Interpreted scripts
● DBD Database definition files (.dbd)
● DBDINC Record type and menu database definition files
● DB Database instance files (.db .vdb)
● TARGETS Other build targets, may need build rule

□ In many cases the name you use should not include the prefix/suffix

■ Named objects are copied into the appropriate install directory as they get built, e.g.
<top>/include, <top>/lib/<arch>, <top>/bin/<arch>, <top>/dbd, <top>/db

APS EPICS Training — 2015-03-31 — EPICS Programming

11

Limiting builds

■ Limit build target to (all) host architectures by using these variables:
● PROD_HOST, TESTPROD_HOST, LIBRARY_HOST, LOADABLE_LIBRARY_HOST, OBJS_HOST,

SCRIPTS_HOST

■ Limit build to (all) IOC architectures by using these variables:
● PROD_IOC, TESTPROD_IOC, LIBRARY_IOC, OBJS_IOC, SCRIPTS_IOC

■ Limit build to OS-specific architectures by using these variables:
● PROD_<osclass>, TESTPROD_<osclass>, LIBRARY_<osclass>, LOADABLE_LIBRARY_<osclass>
● <osclass> may be Linux, vxWorks, WIN32, Darwin, RTEMS or solaris

● Example, build library only for embedded targets:
LIBRARY_vxWorks = myDev
LIBRARY_RTEMS = myDev

APS EPICS Training — 2015-03-31 — EPICS Programming

12

Naming Source Files

■ If a Makefile only creates one target (library, executable etc), you can add the names
of all source files to the SRCS variable:

SRCS = myDev.c myDrv.c

■ If a Makefile only creates one library, you can add the names of all library source files
to the LIB_SRCS variable:

LIBRARY = myDev
LIB_SRCS += myDev.c myDrv.c

■ If a Makefile only creates one executable (PROD), you can add the names of all its
sources to the PROD_SRCS variable:

PROD = myIoc
PROD_SRCS += myMain.c mySeq.st

■ However it’s usually best to use the <name>_SRCS variable:
LIBRARY = myLib
myLib_SRCS = parser.c scanner.cpp process.cpp
PROD = myTool
myTool_SRCS += tool.c

APS EPICS Training — 2015-03-31 — EPICS Programming

13

OS-Specific Source Files

■ You can append _<osclass> to the source variable names to limit which OS the code
gets built on
● SRCS_<osclass>
● LIB_SRCS_<osclass>
● PROD_SRCS_<osclass>
● <name>_SRCS_<osclass>

■ When setting _<osclass> variables the relevant _DEFAULT variable is used for all OS’s
that don’t have an _<osclass> version

■ Example:
LIBRARY = myDev
LIB_SRCS = myDev.c
LIB_SRCS_vxWorks = devVx.c
LIB_SRCS_RTEMS = devRtems.c
LIB_SRCS_DEFAULT = devPosix.c # Linux, Darwin, Solaris
LIB_SRCS_WIN32 = -nil-

APS EPICS Training — 2015-03-31 — EPICS Programming

14

Source File Locations

■ Normally source files appear in the same directory as the Makefile
■ Make can be told to search nearby directories for source files
● SRC_DIRS += <dir>

□ Where <dir> is the relative path from the O.<arch> build directory to the directory containing the
source files

■ Multiple OS-specific implementations of code can also be used
■ Place source files in one or more of these subdirectories
● os/<osclass> OS-specific versions
● os/posix Posix-based OS’s (Linux, Unix, Darwin, RTEMS)
● os/default Last-chance generic version

■ The same source filename should be used for all versions

APS EPICS Training — 2015-03-31 — EPICS Programming

15

C & C++ Compiler Flags

■ Many ways to add flags to the compiler command-line, e.g.
● USR_CFLAGS All C compiles
● USR_CXXFLAGS All C++ compiles
● USR_CPPFLAGS C Preprocessor flags
● USR_CFLAGS_<osclass> All C compiles for <osclass>
● USR_CXXFLAGS_<osclass> All C++ compiles for <osclass>
● USR_CFLAGS_<arch> All C compiles for <arch>
● USR_CXXFLAGS_<arch> All C++ compiles for <arch>
● <name>_CFLAGS Compiling <name>.c
● <name>_CFLAGS_<osclass> Compiling <name>.c for <osclass>
● <name>_CFLAGS_<arch> Compiling <name>.c for <arch>

■ Include file search directories have their own variables
● USR_INCLUDES, USR_INCLUDES_<osclass>, <name>_INCLUDES,

<name>_INCLUDES_<osclass>, <name>_INCLUDES_<arch>
● A ‘-I’ flag is required before each directory named in the INCLUDES

APS EPICS Training — 2015-03-31 — EPICS Programming

16

Linking with Libraries

■ When building an executable, you specify the list of application libraries to be linked
with in a LIBS variable

■ Leave off any ‘lib’ prefix and ‘.a’, ‘.so’ or ‘.dll’ suffix in library names
■ If all executables built by a Makefile need a common set of libraries, name them in

the PROD_LIBS variable:
PROD_LIBS = ca Com

■ All libraries are linked against the list in the LIB_LIBS variable
■ Named products and libraries are linked against a list or libraries named in the

<name>_LIBS variable:
myTool_LIBS = myLib ca Com

■ System libraries must be listed in similar SYS_LIBS variables
● PROD_SYS_LIBS, PROD_SYS_LIBS_<osclass>, PROD_SYS_LIBS_DEFAULT, LIB_SYS_LIBS,

LIB_SYS_LIBS_<osclass>, LIB_SYS_LIBS_DEFAULT, <name>_SYS_LIBS,
<name>_SYS_LIBS_<osclass>, <name>_SYS_LIBS_DEFAULT

APS EPICS Training — 2015-03-31 — EPICS Programming

17

Library Locations

■ Libraries provided by other EPICS modules that are listed in the configure/RELEASE
file will normally be found automatically
● The build system automatically searches those lib/<arch> directories as well as the

<top>/lib/<arch> directory

■ If a library is located elsewhere, the Makefile must specify where
● Set the variable <name>_DIR to the absolute path of the library
● For example:

LIBS += usb
usb_DIR = /opt/local/lib

■ If it’s from a non-EPICS package, use <top>/configure/CONFIG_SITE to set the path to
that package
● Don’t make users have to edit Makefiles to be able to build the code

APS EPICS Training — 2015-03-31 — EPICS Programming

18

Conditionals in Makefiles

■ Use GNU Makefile conditionals to adjust the build
● The configure/CONFIG file includes the <top>/configure/RELEASE and

<top>/configure/CONFIG_SITE file(s)
● Use configure/RELEASE variables if build depends on whether optional modules are

available or not
ifdef SNCSEQ

Lines for builds with sequencer here
else

Lines for builds without sequencer here
endif

● Use variables in CONFIG_SITE to let user enable/disable features
ifeq ($(BUILD_IOCS),YES)

Lines for building IOCs here
else

Lines for building without IOCs here
endif

APS EPICS Training — 2015-03-31 — EPICS Programming

19

libCom — General Purpose Facilities Library

■ The library has 2 main purposes
● Provide a common Operating System API across all supported OS’s
● Implement additional general purpose facilities for use by the IOC, Channel Access, and

other programs

■ base/src/libCom contains 159 C/C++ header files (3.14.12.5)
■ Don’t have time to cover or even mention all of them here
■ The main facilities are discussed in these IOC Application Developers’ Guide sections:
● 10. IOC Error Logging
● 16.3 Task Watchdog
● 18. IOC Shell
● 19. libCom
● 20. libCom OSI libraries
● 21. Registry

APS EPICS Training — 2015-03-31 — EPICS Programming

20

libCom Highlights for C code

■ Multi-threading and inter-thread communication
● epicsThread, epicsMutex, epicsEvent
● epicsRingBytes & epicsRingPointer, epicsMessageQueue

■ Process communication and string conversions
● epicsStdio, epicsStdlib, epicsString
● osiSock
● errlog & logClient
● macLib

■ Data types and structures
● epicsTypes, ellLib, gpHash

■ Mathematics
● Calc engine, epicsMath, epicsEndian

■ Shared libraries
● shareLib.h and epicsExport.h

APS EPICS Training — 2015-03-31 — EPICS Programming

21

Multi-threading

■ epicsThread.h provides a generic threading API
● Thread creation (name, priority, stack size, function, argument)

□ If supported, OS thread priorities mapped to range low=0 .. high=99
□ Stack sizes are OS & architecture dependent: Small, Medium, Large

● Thread operations supported:
□ Sleep (time delay), suspend, resume, get name, get id, sleep quantum, show
□ No API to remotely kill a thread, routine must return for thread to exit

● C++ wrapper class

■ Thread private variables
● Variable operations

□ Create, destroy, get, set

■ Thread once API
● Guarantees execution of initialization function only once

□ Parallel atempts to execute the initialization function by other threads will delay them until the
function has returned within the first thread

APS EPICS Training — 2015-03-31 — EPICS Programming

22

Mutual Exclusion and Event Signaling

■ epicsMutex.h
● Mutual exclusion semaphore
● Supports recursive locking
● Priority inheritance and deletion safety where available from OS
● Mutex operations:

□ Create, destroy, lock, unlock, try-lock, show

● C++ wrapper class

■ 3.15: epicsSpin.h
● Spin-lock semaphore, based on epicsMutex C API

■ epicsEvent.h
● Binary semaphore
● Event operations:

□ Create, destroy, signal, wait, try-wait, wait with timeout, show

● C++ wrapper class

APS EPICS Training — 2015-03-31 — EPICS Programming

23

Circular Message Buffer

■ epicsRingBytes.h
● Fixed size circular buffer
● Supports variable length messages
● Caller must implement locking if needed

□ If single writer thread, no locking is needed on put
□ If single reader thread, no locking is needed on get
□ Base 3.15 provides an optional internal spin-lock

● Buffer operations:
□ Create, delete, put, get, flush
□ 3.15: Create-locked

● Status queries
□ Size, is full, is empty, used bytes, free bytes

APS EPICS Training — 2015-03-31 — EPICS Programming

24

Circular Buffer for Pointers

■ epicsRingPointer.h
● Fixed size circular buffer
● Supports single pointer messages only
● Caller must implement locking if needed

□ If single writer thread, no locking is needed on put
□ If single reader thread, no locking is needed on get
□ Base 3.15 provides an optional internal spin-lock

● C++ wrapper class
● Buffer operations:

□ Create, delete, push, pop, flush
□ 3.15: Create-locked

● Status queries
□ Size, is full, is empty, used bytes, free bytes

APS EPICS Training — 2015-03-31 — EPICS Programming

25

Message Queue

■ epicsMessageQueue.h
● Fixed size queue
● Supports variable length messages
● Designed for use with multiple reader and writer threads
● C++ wrapper class
● Queue operations:

□ Create, destroy, send, try-send, send with timeout, receive, try-receive, receive with timeout

● Status queries:
□ Pending, show

APS EPICS Training — 2015-03-31 — EPICS Programming

26

Wrapper for <stdio.h>

■ epicsStdio.h (includes stdio.h)
● epicsSnprintf() & epicsVsnprintf()

□ Implementation or wrapper for C99’s snprintf() & vsnprintf() functions
□ Ensure all operating systems behave almost the same

● Infrastructure for redirecting stdin, stdout, stderr streams
□ Per-thread settings for each stream (mainly for iocsh)

○ epicsGetThreadStdin(), epicsSetThreadStdin(), etc.
□ Include epicsStdioRedirect.h to redefine the identifiers stdin, stdout & stderr and the functions

printf(), puts() & putchar()
○ In 3.15 this header merged into epicsStdio.h

● Miscellaneous file and filename functions
□ Recommend not using these old APIs

APS EPICS Training — 2015-03-31 — EPICS Programming

27

Standard library

■ epicsStdlib.h (includes stdlib.h)
● epicsStrtod()

□ Synonym or wrapper for strtod()
□ Ensure all operating systems behave the same, support NaN and Inf strings

● epicsScanDouble(), epicsScanFloat()
□ sscanf(“%f”) and sscanf(“%lf”) guaranteed to support NaN and Inf strings

● 3.15: Series of epicsParse functions
□ For converting strings to all numeric types
□ Optional units string capture
□ Error checks include value overflow and underflow
□ All functions return a status value (error code)

APS EPICS Training — 2015-03-31 — EPICS Programming

28

String Processing

■ epicsString.h
● A compilation of useful string functions:

□ Convert string from raw to C-style escaped
□ Convert string from C-style escaped to raw
□ Print string with unprintable characters escaped
□ Shell glob patern matching (does this string match that wildcard patern?)
□ Calculate hash value of strings and memory buffers

● These replace standard routines that are not available on all operating systems:
□ Case-independent string comparisons (strcasecmp, strncasecmp)
□ Re-entrant string tokenization (strtok_r)
□ String duplication (strdup)

APS EPICS Training — 2015-03-31 — EPICS Programming

29

Macro Substitutions

■ macLib.h
● General purpose macro substitution library
● Supports multiple variable scopes, recursive macros, …
● Also handles environment variables
● Operations:

□ Create context, enable/disable warnings, delete context, get macro value, set macro value, push
scope, pop scope, parse macro definitions, install parsed definitions, expand string, expand string
with environment variables, report context

● Efficient, reliable, well-tested
● See macLibREADME file in base/src/libCom/macLib for more details

APS EPICS Training — 2015-03-31 — EPICS Programming

30

Network Sockets API

■ osiSock.h
● Provides a unified API for creating and using network sockets

□ No special application code needed for Windows, Solaris etc.

● Used by Base (CA client and servers, log client & server etc.), Asyn, pvAccess
● Extremely widely used, reliable
● Several routines provided for common tasks

□ Query available network interfaces
□ Create socket, bind to address, listen for connections, ioctl, destroy
□ Configure socket for broadcast UDP
□ Convert socket or IP address to/from ASCII (DNS and numeric)
□ How to unfreeze a thread that is blocked reading from a socket
□ Look up socket error message strings

APS EPICS Training — 2015-03-31 — EPICS Programming

31

Reporting and Logging Errors

■ errMdef.h, errlog.h
● Provide APIs for various purposes related to error handling and logging

□ Associate and look up strings with error status value
□ Standard for error number prefixes
□ Log and flush error messages
□ Listeners to forward logged errors to a remote server
□ Enable/disable display of logged messages on console

■ IocLogServer
● Server application for IOCs and applications to log error messages to
● Stores messages in a circular file (configurable fixed maximum size)
● Log file directory rotation also supported

■ Details in Chapter 10 of the IOC Application Developers’ Guide

APS EPICS Training — 2015-03-31 — EPICS Programming

32

Standard Types

■ epicsTypes.h
● EPICS-standard type definitions of various sizes
● Pre-dates C99, as do some of our supported operating systems
● Defines these standard types

□ epicsInt8, epicsUInt8, epicsInt16, epicsUInt16, epicsInt32, epicsUInt32, epicsFloat32, epicsFloat64,
epicsEnum16

□ 3.15: epicsInt64, epicsUInt64

● Unfortunately epicsInt8 is always ‘char’, so may be unsigned on some architectures
● Also defines

□ MAX_STRING_SIZE (40)
□ epicsFalse (0)
□ epicsTrue (1)
□ stringOf(token) – stringifies token

APS EPICS Training — 2015-03-31 — EPICS Programming

33

Linked Lists

■ ellLib.h
● Doubly-linked list management routines
● Intrusive – listed objects must include an ELLNODE, no extra memory needed
● Operations:

□ Initialize list, object count, first object, last object, next object, previous object, add object,
concatenate lists, delete object, extract objects, get first object, insert object, get nth object, step n
objects, find object in list, free all objects, validate list

● Lists and nodes may be statically initialized
● Efficient, reliable, well-tested
● API modeled on VxWorks lstLib

APS EPICS Training — 2015-03-31 — EPICS Programming

34

Hash Tables

■ gpHash.h
● General-purpose hash table for fast object lookup by name
● Number of buckets fixed at initialization time

□ Powers of 2 from 256 to 65536

● Can store multiple object types in one hash table
□ Pass in a type ID (pointer) to distinguish, included in hash calculation

● Non-obtrusive, table allocates node objects
● Thread-safe access, table contains a mutex
● Operations:

□ Create table, add named object, find by name, delete by name, free table, dump contents

APS EPICS Training — 2015-03-31 — EPICS Programming

35

Calc Engine

■ postfix.h
● Expression compiler and evaluation engine
● Compiles math expressions into a private postfix byte-code format

□ Most standard C operations supported, minor differences in syntax

● Fast execution of the byte-code with a given set of input values (double)
● Used by calc & calcout records in Base, transform record, areaDetector plugin
● Routine to examine input variables used and modified by compiled expression
● Operations:

□ Compile expression, perform calculation, argument usage, dump byte-code

● Efficient, reliable, well-tested
● Detailed documentation in IOC Applications Developers’ Guide

APS EPICS Training — 2015-03-31 — EPICS Programming

36

Other Headers

■ epicsMath.h
● Includes math.h
● Defines epicsINF and epicsNAN
● Ensures finite(), isnan() and isinf() are all defined

■ epicsEndian.h
● Defines 4 numeric macros

□ EPICS_ENDIAN_LITTLE
□ EPICS_ENDIAN_BIG
□ EPICS_BYTE_ORDER
□ EPICS_FLOAT_WORD_ORDER

● The two _ORDER macros are architecture-specific and should be compared with the first
two to determine CPU endianness

APS EPICS Training — 2015-03-31 — EPICS Programming

37

Library Exports & Imports

■ shareLib.h
● Defines several macros for marking library symbols, essential for Windows DLLs

□ epicsShareFunc – function to be exported/imported
□ epicsShareClass – class to be exported/imported
□ epicsShareExtern – ‘extern’ variable declaration
□ epicsShareDef – variable definition
□ epicsShareAPI – function uses __stdcall calling convention on Windows

● The definitions vary depending whether the macro epicsExportSharedSymbols is defined,
and whether the compiler is building a DLL or a static (archive) library

■ epicsExport.h
● Defines epicsExportSharedSymbols, then includes shareLib.h
● Defines a few other macros for IOC registration

□ epicsExportAddress, epicsExportRegistrar(), epicsRegisterFunction()

APS EPICS Training — 2015-03-31 — EPICS Programming

38

Using shareLib.h Properly

■ Library header files should
● include shareLib.h and any other header files needed by the declarations in this header,

then apply the appropriate epicsShare keywords to decorate the header’s declarations

■ Library implementations should
1. include all needed headers for code found outside the library that this code will be part of.

External headers included by the module header file must also be included here
2. #define epicsExportSharedSymbols
3. include all needed headers for code found inside the library this code will be part of

■ Implementations may include epicsExport.h instead of defining the macro
epicsExportSharedSymbols, but it is harder to make it obvious that this should be a
hard dividing line that include files should not cross during subsequent edits

APS EPICS Training — 2015-03-31 — EPICS Programming

39

Unit Testing

■ epicsUnitTest.h
● Unit test reporting library
● Generates Test Anything Protocol (TAP) standard output
● Works with the build system ‘runtests’ and ‘tapfiles’ targets on workstations
● Built-in test harness functionality when running on embedded operating systems
● Operations:

□ Plan, Ok, pass, fail, skip, todo, diagnostic, abort, done

■ testMain.h
● Defines a macro MAIN() allowing tests to be built as programs on Workstations and

functions on embedded operating systems

■ Build system variables TESTPROD, TESTSCRIPTS (3.15: TESTLIBRARY) build programs
without installing them; test programs are usually run in their O.<arch> directory

■ Add test program names to TESTS to be run by ‘make runtests’ etc.

	Blue title page
	Blue body page
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

